"Boolean Algebra"
Tags: "public", "project"
:PROPERTIES:
:ID: 0f27ed55-e622-428f-83ec-8aa9057d0f9c
:mtime: 20231006035204
:ctime: 20231006034730
:END:
#+title: Boolean Algebra
#+filetags: :public:project:
* Equations
$a + 0 = a$
$a + a = a$
$a + 1 = 1$
$a + \overline{a} = 0$
* Distributive Laws
"and" distributes over "or"
$a.(b + c + \cdots) = a.b + a.c + \cdots$
"or" distributes over "and"
$a+(b.c.\ldots)= (a+b).(a+c).\ldots$
* Absorbtion Laws
$a + a.b = a$
* Consensus Theorem
$a.b + \overline{a}.c + b.c = a.b + \overline{a}.c$
$(a + b)$
* Examples of Boolean Simplification
Here is an example of simplifying an expression using boolean algebra.
$a.(\overline{a} + b) = a.\overline{a} + a.b = 0 + a.b = a.b$
* Proof of the Absorbtion Law
TODO
* Another Simplifcation Example
$x.y+\overline{y}.z + x.z + x.y.z
= x.y.z + x.y.\overline{z} + x.y.\overline{z} + x.\overline{y}.z + \overline{x}.\overline{y}.z + x.y.z + x.\overline{y}.z + x.y.z
= x.y.z + x.y.\overline{z} + x.\overline{y}.z + \overline{x}.\overline{y}.z
= x.y.(z + \overline{z}) + \overline{y}.z.(x + \overline{z})
= x.y.1 + \overline{y}.z.1
= x.y + \overline{y}.z$
* A Proof of the Consensus Theorem
$a.b + \overline{a}.c + b.c = a.b + \overline{a}.c + a.b.c$
* DeMorgan's Laws
$\overline{a+b+c+\cdots} = \overline{a}.\overline{b}.\overline{c}.\cdots$
and
$\overline{a.b.c.\cdots}=\overline{a} + \overline{b} + \overline{c} + \cdots $
See Also
Don't Care ConditionsSimplifying Circuits using Boolean AlgebraBoolean SimplificationLeave your Feedback in the Comments Section