:PROPERTIES:
:ID: 6ac2146d-0b78-40f0-a546-9322e5f1e9f0
:mtime: 20240111105923 20240109115253
:ctime: 20240109115213
:END:
#+title: Category of Computable Functions
#+filetags: :public:project:
* Category of Computable Functions
Computable functions form a [[id:12d70e9c-5793-47b3-8db0-8bc83c0f3925][Category]]. To verify this fact, let us check the requirements of being a [[id:12d70e9c-5793-47b3-8db0-8bc83c0f3925][Category]].
1) The objects are types $Obj = Type$
2) The arrows are computable functions $\cdot \rightsquigarrow \cdot = \cdot \to \cdot$
3) The identity arrow is the identity function
\[id(x) = x\]
4) categorical composition is function composition
\[ \forall (f : A \to B) (g : B \to C) \qquad (f \gg g)(x) = g(f(x))\]
And the constraints are satisfied as well
1) Associativity is true by reflexivity
2) identity cancellation is true, trivially.