:PROPERTIES:
:ID: 77d7976b-b3db-44ed-87b7-cc80d150d68b
:mtime: 20231019010745 20231017014715
:ctime: 20231017014710
:END:
#+title: spherical coordinates
#+filetags: :public:project:
* Definition of spherical coordinates
spherical coordinates are a type of [[id:d02a62fb-1601-48a4-9cf2-bbb2ade26402][Coordinate System (Vector Space)]].
spherical coordinates are given by the triple $(r , \theta , \phi)$, where
- $r$ is the radius from the origin
- $\theta$ is the polar or inclination angle from the $z$-axis,
- $\phi$ is the azimuthal angle from the $x$-axis
* Notational Warning
WARNING:
some people get confused about notation because in
[[id:ea993ee3-14c0-492a-8030-7c89836741c0][cylindrical polar coordinates]], $\theta$ represents
the azimuthal angle, but in spherical coordiantes,
$\phi$ represents the azimuthal angle.
* Coordinate Restrictions
We need to restrict things
- let's restrict $0 \le r$
- let's restrict $0 \le \theta \le \pi$
- let's restrict $0 \le \phi < 2\pi$
* Converting between rectangular and spherical coordinates
| $x=r\sin\theta\cos\phi$ | $y = r\sin\theta\sin\phi$ | $z = r\cos\theta$ |
| $r = \sqrt{x^{2}+y^{2}+z^{2}}$ | $\theta = \arccos \frac{z}{r}$ | $\phi = \arctan \frac{y}{x}$ |