:PROPERTIES:
:ID: dded15e1-eb8c-4576-8c9f-818ea7b80ac1
:mtime: 20231017010157 20231007013244
:ctime: 20231007013234
:END:
#+title: Vector Equation for a Line
#+filetags: :public:project:
* 2 Vector Form
Given 2 vectors $\vec{a}, \vec{b}$,
we can express the line as
$\forall \lambda \in \mathbb{R} \qquad \vec{r} = \vec{a} + \lambda (\vec{b} - \vec{a})$
where this line will go through the points given by position vectors $\vec{a}, \vec{b}$.
** Warning
$\vec{a}$ and $\vec{b}$ should be distinct.
* Component Form of a Line
$\frac{x-a_{x}}{b_x-a_{x}}=\frac{y-a_{y}}{b_y-a_{y}}=\frac{z-a_{z}}{b_z-a_{z}}$
* Cross Product Equation
$(\vec{r} - \vec{a}) \times (\vec{b} - \vec{a}) = \vec{0}$