:PROPERTIES:
:ID: 007fa3a4-0821-46f9-8e68-ea079320b036
:mtime: 20231026011312
:ctime: 20231026011307
:END:
#+title: hyperbolic trigonometric functions
#+filetags: :public:project:
* Definitions Hyperbolic Functions
** Sinh
\[sinh(x) = \frac{e^{x}-e^{-x}}{2}\]
** Cosh
\[cosh(x) = \frac{e^{x}+e^{-x}}{2}\]
** Tanh
\[tanh(x) = \frac{sinh(x)}{cosh(x)}\]
** Sech
\[sech(x) = \frac{1}{cosh(x)}\]
** Cosech
\[Cosec(x) = \frac{1}{sinh(x)}\]
** Coth
\[coth(x) = \frac{1}{tanh(x)}\]
* Relations between hyperbolic functions and trigonometric functions
\[cos(ix) = cosh(x)\]
\[sin(ix) = i sinh(x)\]
\[tan(ix) = i tanh(x)\]
Hyperbolic functions are related to [[id:ab249b72-fa90-4826-b9e4-c1e7d967ac82][complex trig functions]]
* Properties of Hyperbolic Functions
- $cosh$ is an even function
- $sinh$ is an odd function
- $tanh$ is an odd function
* Algebraic Identities of hyperbolic functions
\[(cosh(x))^{2} - (sinh(x))^{2} = 1\]
\[cosh(A + B) = cosh(A) cosh(B) + sinh(A) sinh(B)\]
In general, to convert a circular identity to a trigonometric identity,
replace $cos$ with $cosh$, replace $sin$ with $sinh$, and if there
is a product of 2 $sinh$, flip the sign.
\[cosh(0) = 1\]
\[sinh(0) = 0\]
* Plots of hyperbolic functions
#+BEGIN_SRC sage
plot(cosh(x), (x , -1, 1))
#+END_SRC
* Restrictions on hyperbolic functions
\[1 \le cosh(x)\]
\[-1 < tanh(x) < 1\]
* Inverse Hyperbolic Functions
\[arcsinh(x) = \log(x + \sqrt{x^{2} + 1})\]
\[arccosh(x) = \pm \log(x + \sqrt{x^{2} - 1})\]
Note that $arccosh$ has two answers because $cosh$ is even,
i.e. $cosh(-x) = cosh(x)$.