"complex trig functions"
Tags: "public", "project"
:PROPERTIES:
:ID: ab249b72-fa90-4826-b9e4-c1e7d967ac82
:mtime: 20231026013503
:ctime: 20231026013502
:END:
#+title: complex trig functions
#+filetags: :public:project:
* Example :$cos(z) = 2$
Let $z = x + iy$
\begin{align}
&cos(z)\\
&= cos(x + iy) \\
&= cos(x)cos(iy) - sin(x)sin(iy)\\
&= cos(x)cosh(y) -isin(x)sinh(y)\\
\end{align}
So
\begin{align}
&-isin(x)sinh(y) = 0\\
&\iff sin(x) = 0 \lor sinh(y) = 0 \\
&iff x = n\pi \lor y = 0
\end{align}
\begin{align}
& cos(x)cosh(y) = 2 \\
\implies cos(n\pi) = (-1)^{n}
\end{align}
so
\[z = 2m\pi \pm i arccos(2)\]
\[z = 2m\pi \pm i \log(2 + \sqrt{3})\]
See Also
hyperbolic trigonometric functionsLeave your Feedback in the Comments Section