:PROPERTIES:
:ID: 80dd8196-4453-481d-9a07-c08914a877cb
:mtime: 20231024011132
:ctime: 20231024011047
:END:
#+title: De Moivre's Theorem
#+filetags: :project:public:
* De Moivre's Theorem
De Moivre's Theorem is a theorem about
[[id:2553e0fb-12c1-42cc-8e47-54937a36e2c7][complex number]] which deals with raising a complex
number to a power
\[(\cos\theta + i \sin \theta)^{n} = \cos(n\theta) + i \sin(n\theta)\]
* Examples
** Example: Quadruple Angle Formula
*** Question
Use De Moivre's Theorem to find an expression
for $\cos\4\theta$ and $\sin\4\theta$ in terms
of $\cos\theta$ and $\sin\theta$?
*** Solution
\begin{align}
&cos4\theta + i\sin\4\theta \\
&= (\cos^{4}\theta - 6\cos^{2}\theta\sin^{2}\theta + \sin^{4}\theta)
+4i (\cos^{3}\theta\sin\theta - \cos\theta\sin^{3}\theta)
\end{align}
So let's equate the real and imaginary parts
** Example: Exponential forms for sin, cos
\[exp(-i\theta) = \cos\theta - i\sin\theta\]
so
\[\cos\theta = \frac{exp(i\theta) + exp(-i\theta)}{2}\]
and
\[\cos\theta = \frac{exp(i\theta) - exp(-i\theta)}{2i}\]
** Example: Evaluate a sum
*** Question
Evaluate
\[\sum_{ k = 0}^{N - 1} \cos(k\theta)\]
*** Solution
\begin{align}
&S_n \\
&= Re(\sum_{k = 0}^{N - 1} exp(i k \theta)) \\
&= Re(\sum_{k = 0}^{N - 1} exp(i \theta))^{k} \\
\end{align}