:PROPERTIES:
:ID: 2553e0fb-12c1-42cc-8e47-54937a36e2c7
:mtime: 20231024010311 20231021010538 20231019013653
:ctime: 20231019013651
:END:
#+title: complex number
#+filetags: :public:project:
* Definition of complex numbers
\[\mathbb{C} =\{ a + b * i | a , b \in \mathbb{R} \}\]
where $i^2 = -1$.
* Imaginary unit
We call $i$ the *imaginary unit*.
\[i^{2} = -1\]
\[\frac{1}{i} = -i\]
* Real and imaginary part
\[Re(a + b*i) = a\]
\[Im(a + b*i) = b\]
* Notation for complex numbers
We often use the symbol
$z$ to represent a complex number.
We would use the notation
\[z = x + iy\]
* Uses of complex numbers
complex numbers are used in
[[id:0d2bae2f-5054-4aba-b1dc-ca704476764f][fundamental theorem of algebra]]
* Polar Coordinates of Complex Numbers
See more at [[id:9a9960ad-ea53-4d94-ac3b-3156da5d213e][polar representation of complex numbers]].
Let
\[z = x + iy.\]
** Polar multiplication
\[r_{1}e^{i\theta_{1}}r_{2}e^{i\theta_{2}} = (r_{1}r_{2})e^{i(\theta_{1} + \theta_{2})}\]
\[|z_{1}z_{2}| = |z_{1}| |z_{2}|\]
\[arg(z_{1}z_{2}) = arg(z_{1}) + arg(z_{2})\]
** Modulus
\[r = mod(z) = |z| = \sqrt{x^{2} + y^{2}}\]
** Argument
\[\theta = arg(z) = \arctan \frac{y}{x}\]
Note that we must restrict $-\pi < \theta \le \pi$
The argument is NOT unique, but if we want to make the
argument unique, we may restrict $-\pi < \theta \le pi$.
This is called the *principal argument*
* Operations on Complex Numbers
** Addition of Complex Numbers
\[(a + bi) + (c + di) = (a+c) + (b + d)i\]
** Multiplication of Complex Numbers
\[(a+b*i)*(c+d*i) = (ac-bd)+(ad+bc)i\]
** Complex Conjugate
See [[id:f988565d-5b64-4e5e-b600-047ef4fce819][complex conjugate]]
** Division of Complex Numbers
\[\frac{a+bi}{c+di} = \frac{ac+bd}{c^{2}+d^{2}} + \frac{bc-ad}{c^{2}+d^{2}}i\]
\[\frac{r_{1}e^{i\theta_{1}}}{r_{2}e^{i\theta_{2}}} = \frac{r_{1}}{r_{2}}e^{i(\theta_{1}-\theta_{2})}\]
\[\frac{z_{1}}{z_{2}} = \frac{z_{1}z_{2}^{*}}{|z_{2}|^{2}}\]
* As a vector space
the complex numbers form a 2-dimesnional
[[id:5864974d-0edf-4757-9b1f-31b159c9aa7a][Vector]] space