"polar representation of complex numbers"
Tags: "public", "project"
:PROPERTIES:
:ID: 9a9960ad-ea53-4d94-ac3b-3156da5d213e
:mtime: 20231021014457
:ctime: 20231021014406
:END:
#+title: polar representation of complex numbers
#+filetags: :public:project:
* Polar representation of complex numbers
We may represent [[id:2553e0fb-12c1-42cc-8e47-54937a36e2c7][complex number]]s using polar coordinates.
** Euler's Identity
\[re^{i\theta} = r\cos\theta = ri\sin\theta\]
* Operations over polar representations
** Polar multiplication
\[r_{1}e^{i\theta_{1}}r_{2}e^{i\theta_{2}} = (r_{1}r_{2})e^{i(\theta_{1} + \theta_{2})}\]
** Modulus
\[|re^{i\theta}| = r\]
** Argument
\[arg(re^{i\theta}) = \theta + 2\pi n\]
be warned that the argument is not unique.
** Polar Complex Conjugate
See [[id:f988565d-5b64-4e5e-b600-047ef4fce819][complex conjugate]]
\[(re^{i\theta})^{*} = re^{-i\theta}\]
** Polar Division of Complex Numbers
\[\frac{r_{1}e^{i\theta_{1}}}{r_{2}e^{i\theta_{2}}} = \frac{r_{1}}{r_{2}}e^{i(\theta_{1}-\theta_{2})}\]
See Also
roots of unitycomplex numberNST1A Mathematics I Notes (Course B)complex numbercomplex conjugateLeave your Feedback in the Comments Section