:PROPERTIES:
:ID: a67bd5a3-5cd8-4912-be74-33f4e905f28c
:mtime: 20231024013706
:ctime: 20231024013705
:END:
#+title: oscillation problems
#+filetags: :public:project:
* Oscillation Problem
An Oscillation problem is a problem with
a pendulum or a circle.
* Oscillation Problems using [[id:2553e0fb-12c1-42cc-8e47-54937a36e2c7][Complex Numbers]]
The angular displacement of a pendulum can be modeled
by
\[x(t) = \alpha \cos(\omega t) + b\sin(\omega t)\]
so
\[x(t) = Re(A\exp(i\omega t))\]
* Example Problems
** Example 1: Impedance of an AC Circuit
#+BEGIN_SRC dot :file AC.png :cmdline -Kdot -Tpng :exports both
digraph traffic {
node [shape=Mrecord]
C [label="{Capacitor}"] ;
R [label="{Resistor}"] ;
V [label="{Alternating Voltage}"] ;
V -> R ;
R -> C ;
C -> V ;
}
#+END_SRC
#+RESULTS:
[[file:AC.png]]
\[Q_{cap} = V_{cap}C\]
\[Q_{cap} = Re(Q_{0} e^{i \omega t})\]
\[V_{cap} = Re(\frac{Q_{0}}{C}e^{i \omega t})\]
\[I = \frac{dQ_{cap}}{dt} = Re(i\omega Q_{0}e^{i \omega t})\]
\[I = \frac{dQ_{cap}}{dt} = Re(I_{0} e^{i \omega t})\]
\[V_{res} = IR = Re(i \omega Q_{0} e^{i \omega t})\]
\[V_{tot} = V_{res} + V_{cap} = Re((i \omega R + \frac{1}{C}Q_{0} e^{i \omega t}))\]
\[V_{tot = Re((R + \frac{1}{i \omega C})I_{0}e^{i \omega t})}\]