:PROPERTIES:
:ID: cedb1489-8203-40db-82b7-48031c23f171
:mtime: 20231022073114 20231014010224 20231012011223
:ctime: 20231012011145
:ROAM_ALIASES: "cross product"
:END:
#+title: vector product
#+filetags: :public:project:
* Definition
The vector product is when you multiply 2 [[id:5864974d-0edf-4757-9b1f-31b159c9aa7a][vectors]] and get a [[id:5864974d-0edf-4757-9b1f-31b159c9aa7a][vector]].
We define
$\vec{a} \times \vec{b} = |a| |b| \sin \theta \hat{n}$ where $\hat{n}$
is a normal vector to both $\vec{a}$ and $\vec{b}$. We choose $\hat{n}$ such that
$\vec{a}, \vec{b}, \hat{n}$ form a right-handed system.
* Right-Handed Coordinates
There are two vectors normal to every pair $\vec{a}, \vec{b}$. Which one we choose
depends on if our [[id:d02a62fb-1601-48a4-9cf2-bbb2ade26402][coordinate system]] is right-handed or left handed.
By convention, we choose our coordinates to be right handed.
If $\vec{a}$ points along your index finger, and $\vec{b}$ points along your middle finger,
then $\vec{a} \times \vec{b}$ will point along your thumb (in a right-handed coordinate system).
* Relation with the dot product
The vector product is often contrasted against the
[[id:51f7af57-31ed-4224-ae23-3e8230d908e7][dot product]], because the [[id:51f7af57-31ed-4224-ae23-3e8230d908e7][dot product]] returns a scalar and
the vector product returns a [[id:5864974d-0edf-4757-9b1f-31b159c9aa7a][Vectors]].
* Other Names for Vector Product
The vector product is also called the "cross product" or the
"wedge product".
* Algebraic Properties of Vector Product
- Anti-commutative: $\vec{a} \times \vec{b} = - \vec{b} \times \vec{a}$
- $|\vec{a} \times\vec{b} = |\vec{b} \times \vec{a}|$
- Distributes over addition: $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$
- NOT associative: $\vec{a} \times (\vec{b} \times \vec{c}) \neq (\vec{a} \times \vec{b}) \times \vec{c}$
- cancellation: $\vec{a} \times \vec{b} = \vec{0}$ if and only if $\vec{a}$ and $\vec{b}$ are parallel or antiparallel.
- Idempotence: $\vec{a} \times \vec{a} = \vec{0}$.
- Orthogonal: If $\vec{a}$ and $\vec{b}$ are orthogonal, then $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}|$
* Calculating Vector Product using Determinant
It is possible to calculate the vector product of 2 vectors using
the [[id:3aadb278-8b51-4ce7-9ef2-8a27fae2349f][determinant]] of a matrix.
The way you do this is to calculate
$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a & b & c \\ x & y & z \end{vmatrix}$