:PROPERTIES:
:ID: 51f7af57-31ed-4224-ae23-3e8230d908e7
:mtime: 20231010010637 20231007014644
:ctime: 20231007014642
:ROAM_ALIASES: "dot product"
:END:
#+title: Vector Scalar Product
#+filetags: :public:project:
* Names
The scalar product is also called the dot product.
The dot product is one case of an inner product
(although the idea of an inner product might be broader).
* Definition
$\vec{a} \cdot \vec{b} = |a||b| \cos\theta$
* Algebraic Properties of Dot Product
- The dot product is commutative, $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$.
- The dot product distributes over vector addition $\vec{a}\cdot(\vec{b}+\vec{c})=\vec{a}\cdot\vec{b}+\vec{a}\cdot\vec{c}$
- $a \cdot a = |a | ^2$
- $a \cdot b = 0$ if and only if $a$ and $b$ are orthogonal.
- $a \cdot b = |a| |b|$ if and only if $a$ and $b$ are parallel.
* Abuse of Notation
Some authors use an abuse of notation in writing $\vec{a}^{2} =a\cdot a$ instead of $|\vec{a}|^2$.
* Dot product of Cartesian vectors
- $\hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k} = 1$
- $\hat{i} \cdot \hat{j} = \hat{j} \cdot \hat{k} = \hat{k} \cdot \hat{i} = 0$
Thus, in any orthonormal coordinates,
$a \cdot b = a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z}$.