:PROPERTIES:
:ID: e65e7624-7323-40e2-8b8d-5fe498877e85
:mtime: 20231017011113 20231014015155
:ctime: 20231014015148
:END:
#+title: linearly independent
#+filetags: :public:project:
* Definition
Given a list of $n$ vectors
\[B = \{\vec{e}_{1} \ldots \vec{e}_{n}\}\]
We say that the list of vectors is *linearly independent*
if and only if the only solution to the equation
\[\lambda_{1}\vec{e}_{1} + \lambda_{2}\vec{e}_{2}+\cdots + \lambda_{n}\vec{e}_{n} = \vec{0}\]
is
\[\lambda_{1} = 0 , \lambda_{2} = 0 , \ldots , \lambda_{n} = 0\]
* Alternate Definition
A list of vectors $B$ is said to be *linearly independent* if and only if
for all $\vec{r}$, the equation
\[\vec{r} = \lambda_{1}\vec{e}_{1} + \cdots +\lambda_{n}\vec{e}_{n}\]
has one and only one solution.
* Orthogonality
If $\vec{e}_{1} , \ldots \vec{e}_{n}$ are all orthogonal and linearly independent, then
* How to test for linear independence
** Using [[id:e72ab120-e332-4c9d-bf88-ea02dcd4eb99][scalar triple product]]
$\vec{a}, \vec{b}, \vec{c}$ are linearly independent if and only if
\[[\vec{a},\vec{b}, \vec{c}] \neq 0\]
* Example Problems
** Test if vectors are linearly independent
*** Problem
Are $\vec{i}, \vec{j}, \vec{i} + \vec{j}$ linearly independent?
*** Solution
No.