:PROPERTIES:
:ID: e72ab120-e332-4c9d-bf88-ea02dcd4eb99
:mtime: 20231017010547 20231014012016
:ctime: 20231014011945
:END:
#+title: scalar triple product
#+filetags: :public:project:
* Definition
Given vectors $\vec{a}, \vec{b}, \vec{c}$, the scalar triple product is given
by $\vec{a} \cdot (\vec{b} \times \vec{c})$.
* Notation
Sometimes, the scalar triple product is written as
$\vec{a} \cdot (\vec{b} \times \vec{c}) = [\vec{a}, \vec{b} , \vec{c}]$.
* How to Compute the Scalar Triple Product
You can compute the scalar triple product using the [[id:3aadb278-8b51-4ce7-9ef2-8a27fae2349f][determinant of a matrix]].
\[\vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{vmatrix} a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y } & b_{z} \\
c_{x} & c_{y} & c_{z} \end{vmatrix}\]
* Algebraic Properties of the Scalar Triple Product
- If one or more of $\vec{a}, \vec{b}, \vec{c}$ are parallel, then $[\vec{a}, \vec{b}, \vec{c}] = 0$
- If you make a swap of $\vec{a}, \vec{b}, \vec{c}$, then the scalar triple product becomes negated.
- $\vec{a} \cdot (\vec{b} \times \vec{c}) = |\vec{a}| |\vec{b}| |\vec{c}| \cos \theta$
* Volume of a Parallelepiped
One physical intuition of the scalar triple product is that
$[\vec{a}, \vec{b}, \vec{c}]$ represents the (signed) volume of a parallelepiped
whose edges are parallel to $\vec{a}, \vec{b}$, and $\vec{c}$.