"vector triple product"
Tags: "public", "project"
:PROPERTIES:
:ID: ec07501d-0eb3-4433-82b4-1b37bbee6f21
:mtime: 20231017010618 20231014013223
:ctime: 20231014013142
:END:
#+title: vector triple product
#+filetags: :public:project:
* Definition
Given [[id:5864974d-0edf-4757-9b1f-31b159c9aa7a][vectors]] $\vec{a}, \vec{b}, \vec{c}$, the
*vector triple product* is defined as
$\vec{a} \times (\vec{b} \times \vec{c})$
* Properties of the vector triple product
Note that
$\vec{a} \times (\vec{b} \times \vec{c})$ must lie in the
plane of $\vec{b}, \vec{c}$.
* Warning about non-associativity
WARNING:
\[\vec{a} \times (\vec{b} \times \vec{c}) \neq (\vec{a} \times \vec{b}) \times \vec{c}\]
* As Components
Because $\vec{a} \times (\vec{b} \times \vec{c})$ must lie in the plane of $\vec{b}$ and $\vec{c}$, then
we can write
\[\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}\]
* Algebraic Properties of the vector triple product
- By [[id:51f7af57-31ed-4224-ae23-3e8230d908e7][dot product]]: $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}$
* Example Problem 1
Calculate
$(\vec{a} \times \vec{b}) \times (\vec{c } \times \vec{r})$
\[
(\vec{a} \times \vec{b}) \times (\vec{c } \times \vec{r})
= ((\vec{c} \times \vec{r}) \cdot \vec{a}) \vec{b} - ((\vec{c} \times \vec{r}) \cdot \vec{b}) \vec{a}
\]
See Also
Writing a vector in terms of a basisNST1A Mathematics I Notes (Course B)VectorsVector Scalar ProductLeave your Feedback in the Comments Section